

مرکز دانلود رایگان 🧽 مهندسک متالورژی و مواد

www.lran-mavad.com

SHREIR'S CORROSION

SHREIR'S CORROSION FOURTH EDITION

Volume 1 BASIC CONCEPTS, HIGH TEMPERATURE CORROSION

Editors R A Cottis M J Graham R Lindsay S B Lyon J A Richardson J D Scantlebury F H Stott

Corrosion and Protection Centre, University of Manchester, UK

ACADEMIC PRESS

Amsterdam • Boston • Heidelberg • London • New York • Oxford Paris • San Diego • San Francisco • Singapore • Sydney • Tokyo Academic Press is an imprint of Elsevier

Elsevier B.V. Radarweg 29, 1043 NX Amsterdam, The Netherlands

© 2010 Elsevier Ltd. All rights reserved

First Edition 1963

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: permissions@elsevier.com. Alternatively you can submit your request online by visiting the Elsevier web site at http://elsevier.com/ locate/permissions, and selecting *obtaining permission to use Elsevier material*

> British Library Cataloguing in Publication Data A catalogue record fro this book is available from the British Library

> > Library of Congress Catalogue Number: 2009940135

ISBN: 978-0-444-52788-2

For information on all Elsevier publications visit out website at books.elsevier.com

Printed and bound in Spain

 $10 \quad 11 \quad 12 \quad 13 \quad 14 \quad 10 \quad 9 \quad 8 \quad 7 \quad 6 \quad 5 \quad 4 \quad 3 \quad 2 \quad 1$

Contents

Contributors	vii
Editorial Board	ix
Contents of all volumes	xiii
Foreword	xxi
Preface	xxiii
Tribute to L. L. Shreir	xxv

PART I

BASIC CONCEPTS

CHAPTER 1.01		P. Y. I
Chemical Thermodynamics R. A. Cottis	1	CHAF Sulfie
CHAPTER 1.02 Electrochemistry	13	Alloy R. Joh
C. Lefrou, R. P. Nogueira, F. Huet, and H. Takenouti CHAPTER 1.03		CHAF Carb
Outline of Structural Metallurgy	50	D. J. 1
Relevant to Corrosion R. P. M. Procter CHAPTER 1.04	52	CHAF Nitri <i>U. Kri</i>
Mechanical Properties and Fracture of Materials A. H. Sherry and T. J. Marrow	77	CHAF Corr <i>M. Sp</i>
CHAPTER 1.05 Basic Concepts of Corrosion L. L. Sbreir	89	CHAF High <i>I. A. I</i> <i>P. D.</i> 1
PART II PRINCIPLES OF HIGH TEMPERATURE CORROSION]
CHAPTER 1.06 Defects and Transport in Oxides and Oxide Scales B. Pieraggi	101	СНАН Туре <i>В. А. І</i>
		CHAR
CHAPTER 1.07 Mechanisms and Kinetics of Oxidation S. Chevalier	132	Oxid Envir <i>W. J</i> .

Stress Effects in High Temperature Oxidation153M. SchützeCHAPTER 1.09CHAPTER 1.09Thermodynamics and Theory ofExternal and Internal Oxidation of Alloys180B. GleesonPART III

CHAPTER 1.08

TYPES OF HIGH TEMPERATURE CORROSION

CHAPTER 1.10 Oxidation of Metals and Alloys P. Y. Hou	195
CHAPTER 1.11 Sulfidation and Mixed Gas Corrosion of Alloys R. John	240
CHAPTER 1.12 Carburization and Metal Dusting D. J. Young	272
CHAPTER 1.13 Nitridation of Alloys U. Krupp	304
CHAPTER 1.14 Corrosion in Molten Salts <i>M. Spiegel</i>	316
CHAPTER 1.15 High Temperature Tribocorrosion I. A. Inman, P. S. Datta, H. L. Du, C. Kübel, and P. D. Wood	331
PART IV HIGH TEMPERATURE CORROSION ENVIRONMENTS	

1	CHAPTER 1.16 Types of Environments <i>B. A. Baker</i>	399
	CHAPTER 1.17	
	Oxidation in Steam and Steam/Hydrogen	
2	Environments	407
	W. J. Quadakkers and J. Żurek	

مرجع علمي مهندسي مواد

CHAPTER 1.18 Fireside Corrosion N. Otsuka	457	CHAPTER 1.23 High Temperature Corrosion of Chromia-forming Iron, Nickel and	503
CHAPTER 1.19 High Temperature Corrosion Issues for		Cobalt-base Alloys A. Galerie	583
Metallic Materials in Solid Oxide Fuel Cells L. Singheiser, P. Huczkowski, T. Markus,	482	CHAPTER 1.24 High Temperature Corrosion of Alumina-forming Iron, Nickel and	
and W. J. Quadakkers CHAPTER 1.20		Cobalt-base Alloys B. A. Pint	606
Gas Turbine Oxidation and Corrosion N. J. Simms and J. R. Nicholls	518	CHAPTER 1.25 High Temperature Corrosion of Intermetallic Alloys	646
PART V HIGH TEMPERATURE MATERIALS		J. W. Fergus CHAPTER 1.26	
CHAPTER 1.21 Design of High Temperature Alloys P. F. Tortorelli and M. P. Brady	541	High Temperature Corrosion of Ceramics and Refractory Materials K. G. Nickel, P. Quirmbach, and J. Pötschke	668
CHAPTER 1.22 High Temperature Corrosion of Low Alloy Steels L. W. Pinder, K. Dawson, and G. J. Tatlock	558	CHAPTER 1.27 High Temperature Coatings: Protection and Breakdown H. E. Evans	691

Contributors

VOLUME I

B. A. Baker

Special Metals Corporation, 3200 Riverside Drive, Huntington, WV 25705, USA

M. P. Brady

Oak Ridge National Laboratory, Oak Ridge, TN 37831-6115, USA

G. T. Burstein

Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, UK

S. Chevalier

Institut Carnot de Bourgogne, UMR 5209 CNRS, University of Bourgogne, 9 Avenue Savary, BP 47870, 21078 Dijon cedex, France

R. A. Cottis

Corrosion and Protection Centre, School of Materials, University of Manchester, P.O. Box 88, Sackville Street, Manchester, M60 1QD, UK

P. S. Datta

Ellison Building, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK

K. Dawson

Department of Engineering, University of Liverpool, Liverpool, L69 3GH

H. L. Du

Ellison Building, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK

H. E. Evans

School of Metallurgy and Materials, The University of Birmingham, Birmingham B15 2TT, UK

J. W. Fergus

Materials Research and Education Center, 275 Wilmore Laboratories, Auburn University, Auburn, AL 36849, USA

A. Galerie

SIMaP, Grenoble INP/CNRS/UJF, Domaine Universitaire, BP 75, 39402 Saint Martin d'Héres, France

B. Gleeson

Department of Mechanical Engineering and Materials Science, The University of Pittsburgh, 647 Benedum Hall, Pittsburgh, PA 15261, USA

P. Y. Hou

Lawrence Berkeley National Laboratory, Materials Sciences Division, 1 Cyclotron Rd., Berkeley, CA 94720, USA

P. Huczkowski

Forschungszentrum Jülich, IEF2, Jülich, Germany

F. Huet

Laboratoire Interfaces et Systèmes Electrochimiques, Université Pierre et Marie Curie – Paris 6, CNRS, UPR15-LISE, Paris, France

I. A. Inman

Ellison Building, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK

R. John

Shell Global Solutions (US) Inc., Westbollow Technology Center, P.O. Box 4327, Houston, TX 77210, USA

U. Krupp

Faculty of Engineering and Computer Sciences, University of Applied Sciences Osnabrück, Albrechtstraße 30, 49076 Osnabrück, Germany

C. Kübel

Group Leader Electron Microscopy, Forschungszentrum Karlsruhe, Institute for Nanotechnology, Postfach 3640, 76021 Karlsruhe, Germany

C. Lefrou

Grenoble – INP – Grenoble Institute of Technology, UMR 5631 and 5266 of CNRS "LEPMI" and "SIMAP", Grenoble, France

T. Markus

Forschungszentrum Jülich, IEF2, Jülich, Germany

T. J. Marrow

School of Materials, University of Manchester, Manchester, UK

J. R. Nicholls

Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK

K. G. Nickel

Applied Mineralogy, Institute for Geosciences, University Tübingen, Wilhelmstr. 56, D-72074 Tübingen, Germany

R. P. Nogueira

Grenoble – INP – Grenoble Institute of Technology, UMR 5631 and 5266 of CNRS "LEPMI" and "SIMAP", Grenoble, France

N. Otsuka

Corporate R&D Laboratories, Sumitomo Metal Industries, Ltd., 1-8 Fusocho, Amagasaki, Japan

B. Pieraggi

Ecole Nationale Supérieure des Ingénieurs en Arts Chimiques et Technologique de Toulouse, Institut National Polytechnique de Toulouse, F-31077 Toulouse Cedex 04, France

L. W. Pinder

E.ON Engineering Limited Technology Centre, Ratcliffe on Soar, Nottingham, NG11 OEE

B. A. Pint

Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6156, USA

J. Pötschke

Deutsches Institut für Feuerfest und Keramik GmbH, An der Elisabethenkirche 27, D-53113 Bonn, Germany

R. P. M. Procter

Corrosion and Protection Centre, School of Materials, University of Manchester, Manchester M60 1QD, UK

W. J. Quadakkers

Forschungszentrum Jülich, IEF2, Jülich, Germany

W. J. Quadakkers

Forschungszentrum Jülich, Institute of Energy Research (IEF-2), 52428 Jülich, Germany

P. Quirmbach

Deutsches Institut für Feuerfest und Keramik GmbH, An der Elisabethenkirche 27, D-53113 Bonn, Germany

M. Schütze

Karl Winnacker Institut der DECHEMA e.V., Theodor-Heuss-Allee 25, D-60486 Frankfurt am Main, Germany

A. H. Sherry

University of Manchester, Manchester, UK

L. L. Shreir[†]

N. J. Simms

Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK

L. Singheiser

Forschungszentrum Jülich, IEF2, Jülich, Germany

M. Spiegel

Salzgitter-Mannesmann-Forschung GmbH, Ehinger Strasse 200, 47259 Duisburg, Germany

H. Takenouti

Laboratoire Interfaces et Systèmes Electrochimiques, Université Pierre et Marie Curie – Paris 6, CNRS, UPR15-LISE, Paris, France

G. J. Tatlock

Department of Engineering, University of Liverpool, Liverpool, L69 3GH

P. F. Tortorelli

Oak Ridge National Laboratory, Oak Ridge, TN 37831-6115, USA

P. D. Wood

Ricardo Plc, Shoreham Technical Centre, Shoreham-by-Sea, West Sussex, BN43 5FG, UK

D. J. Young

School of Materials Science and Engineering, University of New South Wales, UNSW Sydney, NSW 2033, Australia

J. Żurek

Forschungszentrum Jülich, Institute of Energy Research (IEF-2), 52428 Jülich, Germany

[†]Deceased

Editorial

Board

Bob Cottis graduated from the University of Cambridge in the 1960s/70s with MA (Metallurgy) and PhD (Metallurgy) degrees. He then worked in contract research in the corrosion group at the Fulmer Research Institute, where he was involved in major research projects in the general area of corrosion, corrosion fatigue and other aspects of environmentally-assisted fracture. In addition he undertook many corrosion- and materials-related failure investigations. In 1979 he moved to the Corrosion and Protection Centre at UMIST, later University of Manchester, where he is now Professor of Corrosion Science and Engineering. His research interests are in the areas of environmentally-assisted fracture, localized corrosion, the electrochemistry of corrosion and the application of computing techniques to the control of corrosion.

Bob initiated the regular triennial EMCR (Electrochemical Methods in Corrosion Research) conference series, and has been on the organising or scientific committees of numerous other conferences. He is founding editor of the online Journal of Corrosion Science and Engineering, and co-founder of the Corros-L corrosion mailing list. He was awarded the T. J. Hull Award of NACE International in 2005 for contributions in the field of publication, and elected Fellow of NACE International in 2009. He has been active in the application of new technology to corrosion education, co-ordinating the Ecorr (Engineering Corrosion) project that developed computer-assisted learning materials for the support of the study of corrosion by engineering students, and leading the development of an online distance learning route for the established MSc in Corrosion Control Engineering offered by UMIST/University of Manchester.

Michael Graham graduated from the University of Liverpool with BSc (Chemistry) and PhD (Surface Science), before accepting in 1965 a Post-Doctoral Fellowship at the National Research Council of Canada (NRC). He was also a Research Officer at Berkeley Nuclear Laboratories, before returning to NRC, becoming in 1977 Head of Metallic Corrosion and Oxidation, and later Group Leader of Surfaces and Interfaces. He is currently an NRC Researcher Emeritus and for many years has been a Visiting Professor at the Corrosion and Protection Centre.

Professor Graham is a Past Chairman of the International Corrosion Council, recipient of the W. R. Whitney Award of NACE International, Queen Elizabeth's Jubilee Medal, H. H. Uhlig Award of the Electrochemical Society, U. R. Evans Award of the Institute of Corrosion and the T. P. Hoar Prize of the Institute of Corrosion. His research interests include

thin film formation on metals and semiconductors, high temperature oxidation, and surface passivation and film breakdown. He has over 260 publications.

Robert Lindsay received a BSc in Chemistry from the University of Bristol, and a PhD from the University of Liverpool. He has had appointments at a number of research institutions, including the Fritz-Haber-Institut (Berlin), Cambridge University, and the CSIC Institute of Materials (ICMAB) in Barcelona. Currently, he is a lecturer in the Corrosion and Protection Centre, University of Manchester.

Rob's research is concerned with studying surfaces under controlled conditions to elucidate nanoscale details, focusing primarily on geometric structure determination. Currently, he is employing such an approach to understand corrosion inhibition at the atomic/molecular level. He has published over 60 articles, including several reviews.

Stuart Lyon is Professor of Corrosion Control Technology and Head of the Corrosion and Protection Centre in the School of Materials, University of Manchester. He is a Trustee and former Executive President of the Institute of Corrosion, and Managing Director of its trading subsidiary (Correx Ltd.) as well as a Member of the Board of Administrators of the World Corrosion Organisation. Research interests, which were recognised by the award of the DSc degree by the former UMIST in 2002, include: atmospheric corrosion and degradation, corrosion protection using organic coatings, corrosion inhibition, corrosion monitoring and localised corrosion. Stuart is Editor-in-Chief of Corrosion Engineering Science and Technology, a publication of Institute of Materials.

Tony Richardson graduated from UMIST in the 1960s with BSc (Chemistry) and PhD (Corrosion) degrees. He spent most of his career in industry, working as a materials/corrosion engineer, initially for Unilever, and subsequently for ICI plc, where he led the Company's materials engineering group. For 5 years in the 1970s Tony was a full-time academic in the Corrosion and Protection Centre at UMIST. When he returned to industry, he retained his association with UMIST/University of Manchester, contributing to the Corrosion and Protection Centre as a visiting professor, and also more widely as a Royal Academy of Engineering Visiting Professor in the Principles of Engineering Design. He has also served on the Research Boards of the Welding Institute in the UK, and the Materials Technology Institute in the USA. He retired from ICI plc in 2000 to form Anticorrosion Consulting, which offers independent materials/corrosion consultancy to the chemical process industries.

Tony has been a regular organiser and contributor to international corrosion conferences, served on the editorial board of Corrosion Engineering, Science & Technology for many years, and has contributed regularly to the research and practice literature. In 1979, he was a first recipient of the Guy Bengough medal of the Institute of Materials, Minerals and Mining.

David Scantlebury

My research interests and my major teaching are closely interrelated. For the whole of my academic career (nearly forty years!), I have been interested in the strange situation between a potentially corroding metal and the organic coating that is placed on that metal with the intention of preventing corrosion of that metal. There is a fascinating mixture of knowledge and disciplines overlapping, that I find attractive, including metallurgy, surface science, adhesion, electrochemistry, and polymer science. And all this arises from real problems with real solutions. My other related research interests include marine corrosion, cathodic protection, and the corrosion and corrosion control of rebar steel in concrete. I teach all these subjects mainly in Module 6 in the MSc in Corrosion Control Engineering but as well I give most of the year two undergraduate lectures in the Materials Science degree course. Since 1989, I have organised a five yearly international conference on corrosion protection by organic coatings, the next and fifth is in September 2009 at Christ's College Cambridge. My next and second Cathodic Protection Conference is here in Manchester 6/7th February 2006.

My administrative duties include being the course director for the MSc course in Corrosion Engineering and Control and the one week annual Short Course in Corrosion Engineering, now in its 35th year.

I have supervised some sixty successful PhD students from every part of the world and this social, intellectual and cultural interaction is one of the most satisfying features of my work. I currently hold a visiting Chair in the Department of Chemistry, University of Xiamen, China.

Link to Original Source: http://www.materials.manchester.ac.uk/ aboutus/staff/davidscantlebury/

Howard Stott graduated from the University of Cambridge with a BA (Metallurgy) degree in 1967 and from UMIST with a PhD degree in High Temperature Oxidation in 1970. He was a Post-Doctoral Research Associate before being appointed Lecturer in the Corrosion and Protection Centre, UMIST in 1972. He was promoted to Senior Lecturer followed by Reader then Professor in 1990. He was administrative Head of the Corrosion and Protection Centre for three 3-year periods from 1987 until 2003 and was Operations Director of The Materials Performance Centre for the following two years. He was awarded a DSc degree by the University of Manchester in 1984.

During his career at UMIST, he led a research group in the field of high temperature degradation and protection of materials, with over 50 research students and 30 PDRAs. He served on the Editorial Advisory Boards of Oxidation of Metals, Corrosion Science, Materials and Corrosion and Materials at High Temperature for many years. He was elected Fellow of the Royal Academy of Engineering in 2001 and was awarded the UR Evans Award by the Institute of Corrosion in the same year.

He retired from the University of Manchester (formerly UMIST) in 2006 and now lives in Vancouver, Canada.

Contents of All Volumes

Contents of Volume One		CHAPTER 1.09 Thermodynamics and Theory of External and Internal Oxidation of Allows	
Basic Concepts, High Temperature Corrosion		External and Internal Oxidation of Alloys <i>B. Gleeson</i>	
PART I BASIC CONCEPTS		PART III TYPES OF HIGH TEMPERATURE CORROSION	
CHAPTER 1.01 Chemical Thermodynamics R. A. Cottis	1	CHAPTER 1.10 Oxidation of Metals and Alloys P. Y. Hou	
CHAPTER 1.02 Electrochemistry C. Lefrou, R. P. Nogueira, F. Huet, and H. Takenouti	13	CHAPTER 1.11 Sulfidation and Mixed Gas Corrosion of Alloys	
CHAPTER 1.03 Outline of Structural Metallurgy Relevant to Corrosion <i>R. P. M. Procter</i>	52	R. John CHAPTER 1.12 Carburization and Metal Dusting D. J. Young	
CHAPTER 1.04 Mechanical Properties and Fracture of Materials A. H. Sherry and T. J. Marrow	77	CHAPTER 1.13 Nitridation of Alloys U. Krupp	
CHAPTER 1.05 Basic Concepts of Corrosion L. L. Shreir	89	CHAPTER 1.14 Corrosion in Molten Salts <i>M. Spiegel</i>	
PART II PRINCIPLES OF HIGH TEMPERATUR CORROSION	RE	CHAPTER 1.15 High Temperature Tribocorrosion I. A. Inman, P. S. Datta, H. L. Du, C. Kübel, and P. D. Wood	
CHAPTER 1.06 Defects and Transport in Oxides and Oxide Scales B. Pieraggi	101	PART IV HIGH TEMPERATURE CORROSION ENVIRONMENTS	
CHAPTER 1.07 Mechanisms and Kinetics of Oxidation <i>S. Chevalier</i>	132	CHAPTER 1.16 Types of Environments B. A. Baker	
CHAPTER 1.08 Stress Effects in High Temperature Oxidation M. Schütze	153	CHAPTER 1.17 Oxidation in Steam and Steam/Hydrogen Environments W. J. Quadakkers and J. Żurek	

CHAPTER 1.18			_
Fireside Corrosion	457	Contents of Volume Two	
N. Otsuka			
		Corrosion in Liquids, Corrosion	
CHAPTER 1.19		Evaluation	
High Temperature Corrosion Issues for			
Metallic Materials in Solid Oxide Fuel		PART I	
Cells	482	PRINCIPLES OF CORROSION IN LIQUID	S
L. Singheiser, P. Huczkowski, T. Markus,			-
and W. J. Quadakkers		CHAPTER 2.01	
			25
CHAPTER 1.20		G. S. Frankel and R. A. Cottis	
Gas Turbine Oxidation and Corrosion	518		
J. R. Nicholls and N. J. Simms		CHAPTER 2.02	
		Passivity and Localized Corrosion 7	31
		G. T. Burstein	
PART V			
HIGH TEMPERATURE MATERIALS		PART II	
		TYPES OF CORROSION IN LIQUIDS	
CHAPTER 1.21			
Design of High Temperature Alloys	541	CHAPTER 2.03	
P. F. Tortorelli and M. P. Brady		Crevice Corrosion 7	753
		N. Corlett, L. E. Eiselstein, and N. Budiansky	
CHAPTER 1.22		······································	
High Temperature Corrosion of Low		CHAPTER 2.04	
Alloy Steels	558	Pitting Corrosion 7	72
L. W. Pinder, K. Dawson, and G. J. Tatlock		M. G. Alvarez and J. R. Galvele	
CHAPTER 1.23		CHAPTER 2.05	
High Temperature Corrosion of		, B	801
Chromia-forming Iron, Nickel and		R. C. Newman	
Cobalt-base Alloys	583		
A. Galerie	202	CHAPTER 2.06	10
		8	810
CHAPTER 1.24		D. L. Engelberg	
High Temperature Corrosion of		CHAPTER 2.07	
Alumina-forming Iron, Nickel and			328
Cobalt-base Alloys	606	H. P. Hack	20
B. A. Pint	000	11. 1. 1140K	
D. 11. 1 111		CHAPTER 2.08	
CHAPTER 1.25		Environmentally Assisted Cracking	
High Temperature Corrosion of			357
	646	R. C. Newman	
Intermetallic Alloys	040		
J. W. Fergus		CHAPTER 2.09	
CHARTER 1 2/		Stress Corrosion Cracking 8	864
CHAPTER 1.26		R. C. Newman	
High Temperature Corrosion of			
Ceramics and Refractory Materials	668	CHAPTER 2.10	
K. G. Nickel, P. Quirmbach, and J. Pötschke		Hydrogen Embrittlement 9	02
		R. A. Cottis	
CHAPTER 1.27			
High Temperature Coatings: Protection		CHAPTER 2.11	
and Breakdown	691	8 , , , 8	23
H. E. Evans		C. M. Fowler	

CHAPTER 2.12 Corrosion Fatigue R. Akid	928	CHAPTER 2.25 Corrosion in Acid Gas Solutions S. Nesic and W. Sun	1270
CHAPTER 2.13 Flow Assisted Corrosion H. G. Schmitt and M. Bakalli	954	CHAPTER 2.26 Corrosion in Lubricants/Fuels R. W. Wilson and S. B. Lyon	1299
CHAPTER 2.14 Under Film/Coating Corrosion <i>H. N. McMurray and G. Williams</i>	988	CHAPTER 2.27 Corrosion in Body Fluids D. J. Blackwood	1308
CHAPTER 2.15 Tribocorrosion R. J. K. Wood	1005	CHAPTER 2.28 Corrosion by Wood M. J. Schofield	1323
PART III LIQUID CORROSION ENVIRONMENTS		CHAPTER 2.29 Corrosion in Radiolysis Induced Environments G. O. H. Wbillock	1330
CHAPTER 2.16 Atmospheric Corrosion I. S. Cole	1051	PART IV EXPERIMENTAL TECHNIQUES FO EVALUATING CORROSION	R
CHAPTER 2.17 Corrosion in Natural Waters S. B. Lyon	1094	CHAPTER 2.30 Electrochemical Methods R. A. Cottis	1341
CHAPTER 2.18 Marine Corrosion B. Pbull	1107	CHAPTER 2.31 Spectroscopies, Scattering and Diffraction Techniques HH. Strehblow and D. Lützenkirchen-Hecht	1374
CHAPTER 2.19 Corrosion in Soils J. F. D. Stott and G. John	1149	CHAPTER 2.32 Electron and Photon Based Spatially Resolved Techniques X. Zbou and G. E. Thompson	1405
CHAPTER 2.20 Corrosion in Microbial Environments J. F. D. Stott	1169	CHAPTER 2.33 Scanning Probe Microscopies P. Marcus and V. Maurice	1430
CHAPTER 2.21 Corrosion in Alkalis J. A. Richardson CHAPTER 2.22	1191	CHAPTER 2.34 Corrosion Testing and Determination of Corrosion Rates P. J. McIntyre and A. D. Mercer	1443
Corrosion in Hydrogen Halides and Hydrohalic Acids J. A. Richardson CHAPTER 2.23	1207	CHAPTER 2.35 Environmentally Assisted Cracking Test Methods R. N. Parkins	1527
Corrosion in Sulfuric Acid J. A. Richardson	1226	CHAPTER 2.36 Applications of Statistical Analysis	
CHAPTER 2.24 Corrosion in Nitric Acid G. O. H. Wbillock and S. E. Worthington	1250	Techniques in Corrosion Experimentation, Testing, Inspection and Monitoring N. Laycock, P. Laycock, P. Scarf, and D. Krouse	1547

PART V MODELING CORROSION		CHAPTER 3.06 Aqueous Corrosion of Cobalt and its Alloys	1916
CHAPTER 2.37 Introduction to the Modeling of Corrosion <i>R. A. Cottis</i>	1581	A. Neville and U. Malayoglu CHAPTER 3.07 Corrosion of Copper and its Alloys C. D. S. Tuck, C. A. Powell, and J. Nuttall	1937
CHAPTER 2.38 Modeling of Aqueous Corrosion A. Anderko	1585	CHAPTER 3.08 Corrosion of Aluminum and its Alloys G. M. Scamans, N. Birbilis, and R. G. Buchheit	1974
CHAPTER 2.39 Predictive Modeling of Corrosion D. D. Macdonald and G. R. Engelbardt CHAPTER 2.40	1630	CHAPTER 3.09 Corrosion of Magnesium and its Alloys K. U. Kainer, P. Bala Srinivasan, C. Blawert, and W. Dietzel	2011
Neural Network Methods for Corrosion Data Reduction R. A. Cottis	1680	CHAPTER 3.10 Corrosion of Titanium and its Alloys D. W. Shoesmith and J. J. Noël	2042
Contents of Volume Three		CHAPTER 3.11 Corrosion of Lead and its Alloys S. B. Lyon	2053
Corrosion and Degradation of Engineering Materials		CHAPTER 3.12 Corrosion of Tin and its Alloys S. B. Lyon	2068
PART I FERROUS METALS AND ALLOYS		CHAPTER 3.13	
		Corrosion of Zinc and its Alloys F. E. Goodwin	2078
CHAPTER 3.01 Corrosion of Carbon and Low Alloy Steels S. B. Lyon	1693	•	2078 2094
Corrosion of Carbon and Low Alloy Steels	1693 1737	F. E. Goodwin CHAPTER 3.14 Corrosion of Zirconium and its Alloys	
Corrosion of Carbon and Low Alloy Steels S. B. Lyon CHAPTER 3.02 Corrosion of Cast Irons		F. E. Goodwin CHAPTER 3.14 Corrosion of Zirconium and its Alloys TL. Yau CHAPTER 3.15 Corrosion of Tantalum and Niobium and their Alloys	2094
Corrosion of Carbon and Low Alloy Steels S. B. Lyon CHAPTER 3.02 Corrosion of Cast Irons A. Reynaud CHAPTER 3.03 Corrosion of Iron Nickel Alloys and Maraging Steel	1737	F. E. Goodwin CHAPTER 3.14 Corrosion of Zirconium and its Alloys TL. Yau CHAPTER 3.15 Corrosion of Tantalum and Niobium and their Alloys S. B. Lyon CHAPTER 3.16 Corrosion of Tungsten and its Alloys	2094 2135
Corrosion of Carbon and Low Alloy Steels S. B. Lyon CHAPTER 3.02 Corrosion of Cast Irons A. Reynaud CHAPTER 3.03 Corrosion of Iron Nickel Alloys and Maraging Steel G. N. Flint, J. W. Oldfield, and D. P. Dautovich CHAPTER 3.04 Aqueous Corrosion of Stainless Steels	1737 1789 1802	F. E. Goodwin CHAPTER 3.14 Corrosion of Zirconium and its Alloys TL. Yau CHAPTER 3.15 Corrosion of Tantalum and Niobium and their Alloys S. B. Lyon CHAPTER 3.16 Corrosion of Tungsten and its Alloys S. B. Lyon CHAPTER 3.17 Corrosion of Molybdenum and its Alloys	2094 2135 2151

CHAPTER 3.20 Corrosion of Amorphous and Nanograined Alloys H. Habazaki	2192	C L C R
CHAPTER 3.21 Corrosion of Noble Metals S. B. Lyon	2205	C L S
CHAPTER 3.22 Corrosion of Passive Alloys: The Effect of Noble Metal Additions J. H. Potgieter	2224	A C L
CHAPTER 3.23 Corrosion of Metal Matrix Composites L. H. Hibara	2250	
PART III CERAMIC MATERIALS		C C G
CHAPTER 3.24 Degradation of Carbon and Graphite S. B. Lyon	2271	C R A J
CHAPTER 3.25 Degradation of Engineering Ceramics <i>R. Morrell</i>	2282	<i>J</i> .
CHAPTER 3.26 Degradation of Glass and Glass Ceramics S. Oliver, B. A. Proctor, and C. A. May	2306	N
CHAPTER 3.27 Degradation of Glass Linings and Coatings G. Schäfer	2319	
CHAPTER 3.28 Degradation of Vitreous Enamel Coatings <i>T. Curtis</i>	2330	С S G И
CHAPTER 3.29 Degradation of Ceramic Masonry Linings D. I. Hughes	2337	С Р Л
CHAPTER 3.30 Degradation of Cement and Concrete P. Lambert, R. Brueckner, and C. Atkins	2348	С С Х
PART IV POLYMERIC MATERIALS		С
CHAPTER 3.31 Degradation of Plastics and Polymers	2369	0

D. J. Hourston

CHAPTER 3.32 Degradation of Polymer Matrix	
	2387
R. H. Martin	
CHAPTER 3.33	
Degradation of Natural Rubber and	
Synthetic Elastomers	2407
A. bin Samsuri	
CHAPTER 3.34	
Degradation of Wood	2439
L. C. Pinion and E. Ajuong	
PART V	

JOINTS

CHAPTER 3.35	
Corrosion of Metal Joints	2447
G. Pimenta and R. A. Jarman	
CHAPTER 3.36	
Role of Corrosion in the Failure of	
Adhesive Joints	2463
J. F. Watts	

Contents of Volume Four

Management and Control of Corrosion

PART I SURFACE TREATMENT AND **MODIFICATION**

0	CHAPTER 4.01 Surface Pretreatment G. L. Higgins, R. S. Hullcoop, S. Turgoose, and W. Bullough	2483
7	CHAPTER 4.02 Phosphate Coatings M. O. W. Richardson and R. E. Shaw	2494
8	CHAPTER 4.03 Coatings Produced by Anodic Oxidation X. Zhou, P. G. Sheashy, and B. A. Scott	2503
	PART II	NCC

METALLIC AND INORGANIC COATINGS

CHAPTER 4.04 General Principles of Protection by 2519 Coatings D. R. Gabe, G. D. Wilcox, and V. E. Carter

CHAPTER 4.05		PART IV		
Diffusion Coatings	2532	ELECTROCHEMICAL PROTECTIO	N	
J. R. Nicholls, K. A. Long, and N. J. Simms CHAPTER 4.06 Hot Dipped Coatings	2556	CHAPTER 4.18 Principles of Cathodic Protection V. Ashworth	2747	
W. J. Smith and F. E. Goodwin CHAPTER 4.07 Plated Coatings	2577	CHAPTER 4.19 Sacrificial Anodes R. F. Crundwell	2763	
D. R. Gabe and M. Clarke CHAPTER 4.08 Sprayed Coatings	2610	CHAPTER 4.20 Impressed-current Anodes W. R. Jacob	2781	
K. T. Voisey CHAPTER 4.09 Laser Applied Coatings Z. Liu	2622	CHAPTER 4.21 Practical Application of Cathodic Protection <i>B. S. Wyatt</i>	2801	
PART III PAINTS AND ORGANIC COATING	GS	CHAPTER 4.22 Interaction and Stray-current Corrosion L. Di Biase	2833	
CHAPTER 4.10 Paint Application N. R. Whitebouse	2637	CHAPTER 4.23 Cathodic Protection Instrumentation B. S. Wyatt	2839	
CHAPTER 4.11 Paint Formulation <i>G. P. Bierwagen and A. M. Huovinen</i>	2643	CHAPTER 4.24 Anodic Protection P. Novák	2857	
CHAPTER 4.12 Mechanisms of Protection by Paints 2666 <i>T.E. O. Manual</i>		PART V ENVIRONMENTAL MODIFICATION		
<i>J. E. O. Mayne</i> CHAPTER 4.13 Temporary Protectives <i>T. N. Tate and E. W. Beale</i>	2678	CHAPTER 4.25 Introduction to Control of Corrosion by Environmental Modification R. Lindsay and S. B. Lyon	2891	
CHAPTER 4.14 Marine Paints P. Jackson	2683	CHAPTER 4.26 Chemical Treating in Oil and Gas Production J. L. Dawson	2900	
CHAPTER 4.15 Coatings for Structures in Contact With the Ground D. Fairburst	2702	CHAPTER 4.27 Environmental Modification for Cooling, Heating and Potable Water Systems C. Frayne	2930	
CHAPTER 4.16 Inspection of Paints and Painting Operations	2720	CHAPTER 4.28 Boiler and Feedwater Treatment <i>A. Banweg</i>	2971	
N. R. Whitebouse CHAPTER 4.17 Paint and Coating Failures and Defects B. Fitzsimons and T. Parry	2728	CHAPTER 4.29 Corrosion Inhibitors: Other Important Applications V. S. Sastri	2990	

www.iran_mavad.com

مرجع علمي مهندسي مواد

PART VI		CHAPTER 4.38	
CORROSION MANAGEMENT		Management of Corrosion of Aircraft C. J. E. Smith	3175
CHAPTER 4.30 Corrosion Management Overview J. L. Dawson	3001	CHAPTER 4.39 Management of Corrosion of Infrastructure	3198
CHAPTER 4.31 Economic Aspects of Corrosion J. A. Richardson and J. L. Dawson	3040	C. Atkins, R. Brueckner, and P. Lambert CHAPTER 4.40	
CHAPTER 4.32 Materials Selection for Corrosion Resistance T. A. Richardson and S. B. Lyon	3052	Management of Corrosion in the Petrochemical and Chemical Industries J. A. Richardson	3207
CHAPTER 4.33 Mitigation of Corrosion Risks by Design J. A. Richardson and J. L. Dawson	3065	CHAPTER 4.41 Management of Corrosion in the Oil and Gas Industry	3230
CHAPTER 4.34 Risk Based Inspection <i>P. Horrocks and S. Adair</i>	3084	<i>J. Dawson, G. John, and K. Oliver</i>	5250
CHAPTER 4.35 Assessment of Fitness for Service A. H. Sherry	3102	Management of Corrosion of Onshore Pipelines J. M. Race	3270
CHAPTER 4.36 Corrosion Monitoring and Inspection <i>C. F. Britton</i>	3117	CHAPTER 4.43 Preservation of Metallic Cultural Heritage	3307
CHAPTER 4.37 Management of Corrosion of Automobiles N. R. Whitehouse	3167	D. Watkinson Index	3369

Foreword

In keeping with most of the colleagues who have edited this book, I had the good fortune to meet and know Lionel Shreir. We knew him first through the 1st edition of Corrosion, published in 1963, that was our introduction to the subject as we embarked on our postgraduate research. In the UK, Shreir's Corrosion was the one-stop-reference work that provided an introduction to most aspects of corrosion and its control, authored by the great and good of corrosion and heavily laced with scientific fundamentals. Later, we got to know Lionel personally as a very active educator, researcher and consultant during his tenure as Head of Metallurgy at Sir John Cass College in London. After Lionel's retirement, my predecessor, Graham Wood, invited Lionel to join us in the Corrosion and Protection Centre that had been established in Manchester in the early 1970s and we were delighted when he accepted an honorary position. He provided valuable advice and support and, in addition to his considerable professional talents that spawned an impressive collection of awards, he was a great encourager of the young and a very affable, charming colleague.

We are well placed in Manchester to take on the task of editing a 4th edition of Corrosion in having world class academics in most areas of corrosion science and engineering. Even so, I know that my colleagues thought long and hard before taking on such a challenging task and our affection and respect for Lionel were undoubtedly key influences on their decision to proceed. I applaud their efforts in delivering a 4th Edition of Corrosion, not least those of our retired and visiting professors, Howard Stott, Mike Graham and Tony Richardson, and I am delighted to see contributions from Manchester alumni from around the world. The Corrosion and Protection Centre is proud to be associated with this 4th Edition of Corrosion, which we dedicate to the memory of one of corrosion's godfathers, Lionel Shreir.

G E Thompson, OBE FREng, Head, Corrosion and Protection Centre, School of Materials, University of Manchester

Preface to the Fourth Edition

Over the 46 years since it was first published, Shreir's Corrosion has sustained its reputation as a major educational and reference work on all aspects of corrosion science and engineering. For the 3rd Edition, Lionel enlisted the assistance of Tim Burstein and Ray Jarman to edit the work and his good judgement was reflected in its continuing quality and popularity. So, in agreeing to take on the task of editing a 4th Edition of Shreir, we were keenly aware of our responsibility to maintain the reputation that the work has earned amongst our peers in the corrosion science and engineering communities, not to mention the wider engineering community, worldwide.

In approaching a 4th Edition, we decided to depart from the structure of previous editions and rebalance the content of the work to reflect the major advances that have been made since the work was first published in the techniques available for corrosion research, in our understanding of the mechanisms of aqueous and high temperature corrosion, and in the development of practices for the control and management of corrosion. Thus, we have commissioned new contributions on experimental techniques for the study of corrosion and the modeling and prediction of corrosion behaviour, and in an era of intense societal pressures to prevent major incidents that threaten safety, health and the environment, we have commissioned contributions on the management of corrosion in mature industries.

In making significant changes, we have been concerned to retain the essential character of Shreir's Corrosion, which has always doubled as part textbook and part reference work. As such, we hope that it will retain its wide appeal to all with a professional interest or involvement in corrosion, including graduate and post graduate students, academics who teach corrosion courses, or with active corrosion research interests and scientists and engineers of any discipline working as corrosion professionals in research or consulting, in supplying corrosion control services or corrosion resistant materials, or in organisations that operate physical assets of any type that are vulnerable to corrosion.

We would like to record our gratitude to our many authors from around the world for their willingness to produce chapters in times when both effort and time are scarcer commodities than used to be the case in professional life. We decided to retain some 'old master' contributions from Lionel himself, Tim Burstein, Robin Proctor, Jack Mayne and Redvers Parkins on fundamental topics that are essentially timeless. We have contributed some chapters ourselves and, as anyone previously involved in editing an undertaking such as this will understand, have attempted to update one or two existing chapters in haste where prospective authors were unable to deliver. While the outcome may not be perfect, we hope sincerely that it will prove as valuable to the corrosion science and engineering communities worldwide as its predecessors and, in so doing, will help repay our collective dues to Lionel Shreir, who started it all.

Finally, we record our gratitude to the Elsevier development and production staff who kept us on task throughout the project and worked so hard for a successful outcome, in particular Arnout Jacob, Adrian Shell, Natalia Kennedy, Nicola Lally, Simon Wood, Hilary Broadribb, Melinda Debreczeni, Beckie Brand, Fiona Geraghty, Hazel Harris, Gareth Steed, Bob Donaldson and last, but very definitely not least, Kostas Marinakis.

> RAC/MJG/RL/SBL/JAR/JDS/FHS Corrosion & Protection Centre School of Materials University of Manchester

L. L. Shreir, OBE, 1914–1992

In keeping with most of the colleagues who have edited this book, I had the good fortune to meet and know Lionel Shreir. We knew him first through the 1st edition of Corrosion, published in 1963, that was our introduction to the subject as we embarked on our postgraduate research. In the UK, Shreir's Corrosion was the one-stop-reference work that provided an introduction to most aspects of corrosion and its control, authored by the great and good of corrosion and heavily laced with scientific fundamentals. Later, we got to know Lionel personally as a very active educator, researcher and consultant during his tenure as Head of Metallurgy at Sir John Cass College in London. After Lionel's retirement, my predecessor, Graham Wood, invited Lionel to join us in the Corrosion and Protection Centre that had been established in Manchester in the early 1970s and we were delighted when he accepted an honorary position. He provided valuable advice and support and, in addition to his considerable professional talents that spawned an impressive collection of awards, he was a great encourager of the young and a very affable, charming colleague.

We are well placed in Manchester to take on the task of editing a 4th edition of Corrosion in having world class academics in most areas of corrosion science and engineering. Even so, I know that my colleagues thought long and hard before taking on such a challenging task and our affection and respect for Lionel were undoubtedly key influences on their decision to proceed. I applaud their efforts in delivering a 4th Edition of Corrosion, not least those of our retired and visiting professors, Howard Stott, Mike Graham and Tony Richardson, and I am delighted to see contributions from Manchester alumni from around the world. The Corrosion and Protection Centre is proud to be associated with this 4th Edition of Corrosion, which we dedicate to the memory of one of corrosion's godfathers, Lionel Shreir.

G E Thompson, OBE FREng, Head, Corrosion and Protection Centre, School of Materials, University of Manchester